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Explicit expressions for all of the effective transport coefficients are derived for thermochemically equilibrium flows using the 

exact mass and heat transfer equations, which are resolved with respect to the “forces” (the gradients of the hydrodynamic variables) 

via the flukes. It is shown that, in a mixture where the components have different diffusion properties. separation (diffusion) of 

the chemical elements occurs which leads to a state of affairs where the equilibrium concentrations, and together with them, the 

effective transport coefficients will be functions not only of the pressure and temperature but will also depend on the concentrations 

of the elements, determined when solving the problem (self-consistent concentrations of the elements). It is shown that the 

existence of an electric current and lack of quasineutrality (flow around electrically conducting walls-electrodes) does not change 

the structure of the expressions for the effective transport coefficients and does not add anything new. The approximate and 

incomplete treatment of thermochemically equilibrium fows of multicomponent gas mixtures and a plasma in previously published 

papers are especially noted. Numerical estimates of the effective transport coefficients are presented for an air plasma and the 

domains in the pressure-temperature plane with the required number of approximations in order to obtain results with an error 

of no worse than -5% are indicated. 0 2000 Elsevier Science Ltd. All rights reserved. 

An extensive literature [l-8] exists on transport phenomena in thermochemically equilibrium multi- 
component gas mixtures of electrically neutral and charged components when the temperature of all 
the components and the temperature of the internal degrees of freedom are identical (thermal 
equilibrium) and the time for the occurrence of the slowest process is much less than the characteristic 
hydrodynamic time, such as, for example, the time a fluid particle resides in the flow domain being 
considered. Heat transfer, taking account of the additional diffusion transport of “chemical” energy, 
was first considered by Nernst in the case of a single, very simple reaction [l]. Subsequently, a method 
for binary gas mixtures, in which a single fast dissociation reaction occurs, was developed in [2-4] and 
elsewhere. The effective thermal conductivity was derived in [5, 61 for the case of multicomponent 
mixtures at rest (Vp = 0,p is the pressure in the mixture) with an arbitrary, finite number of chemical 
reactions taking place and the thermal conductivity for partially ionized, chemically equilibrium mixtures 
was derived in [7, 81. 

The papers noted above do not completely and exactly solve the problem of the hydrodynamic 
description of thermochemically equilibrium flows of multicomponent gas mixtures and a plasma when 
the components have different diffusion properties, and the investigations were carried out outside the 
context of the complete system of diffusion and energy equations for equilibrium flows for the following 
reasons. First, in a number of papers, the energy equation for chemically equilibrium flows is described 
as for a homogeneous gas but with the conventional thermal conductivity replaced by an effective thermal 
conductivity. Second, these papers are limited solely to the calculation of the effective thermal 
conductivity and only in isobaric flows (Vp = 0). Taking account of the pressure gradient leads to an 
additional term in the energy equation for chemically equilibrium systems (see below: (8.11)). Third, 
the derivation of the expression for the thermal conductivity ?+ is based on the use of the mass transfer 
equations of the components in the Stefan-Maxwell form without making allowance for the effects of 
thermal and pressure diffusion. Fourth, quasineutrality is assumed in the case of a plasma (quasineutrality 
breaks down electrically conducting walls-electrodes) and itis assumed that there is no external force 
field [7]. Fifth, only molecular heat transfer with a specified element composition was considered, that 
is, no allowance was made for molecular mass transfer in the form of the diffusion of elements which, 
of necessity, manifests itself when there is a temperature gradient in a multicomponent mixture where 
the components have different diffusion properties even when the effects of thermal diffusion and 
pressure diffusion are neglected (see below: (8.16) and (8.17)). 
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Hence, in the general case, integrals with constant concentrations and zero diffusion fluxes of the 
elements CT = const, Jj* = 0 (j = 1, . . . , L), where L is the number of elements from which, as a result 
of the reaction, the N-component mixture is formed, do not exist in the case of chemically equilibrium 
flows of mixtures where the components have dif#erent diffusion properties. When account is taken of 
the diffusion of the elements in chemically equilibrium mixtures, this leads to the appearance of a further 
whole series of cross effective transport coefficients, as a result of which the diffusive flow of any given 
element. depends on the concentration gradients of all the other elements. Attention was first drawn 
to thisin’[9, lo]. Finally, and’this is the most important remark, the initial formulae for the transport 
coefficientswere based on the use of the lowest approximations, that is, the first non-zero approximations 
when they were found in the form of a series of Sonin polynomials using the Chapman-Enskog method 
(CEM) for the solution of Boltzmann’s equation [ll]. 

It is necessary to take account of higher approximations when calculating the transport coefficients 
of a plasma in order to obtain quantitatively correct results. It has been repeatedly pointed out in the 
literature [ 12,131 that the formulae which are conventionally used for the transport coefficients, obtained 
in the lower approximations of the Chapman-Enskog method [ll] (the first approximation for the 
diffusion coefficients and the second approximation for the thermal conductivity and thermal diffusion 
coefficient), do not reduce to the exact formulae for the transport coefficients, obtained in [ 14, 151 by 
the method of statistical mechanics of charged particles, in the case of a completely ionized plasma. 
Calculations [16,17] for certain single-element ionised gases such as argon and hydrogen, for example, 
show that, for the correct determination of the transport coefficients, it is necessary to take account of 
a minimum of three terms in the expansion of the perturbed distribution functions in series over Sonin 
polynomials (the third approximation). Confirmation of the need to take account of higher approxi- 
mations in the case of ionized mixtures containing a light component can be found in [18]. 

For a low degree of ionization, the convergence of the approximations is slower, the more pronounced 
the change in the electron scattering cross-section for the atom as a function of the energy of the electron 
[19]. In particular, in the case of moderately ionized argon, it is necessary to take account of up to six 
approximations when calculating the electrical conductivity [17, 20, 211. If, however, the scattering 
coefficient only changes slightly, it is sufficient to use the third degree of approximation for the electron 
heat conduction for any degree of ionization of a mixture [19]. 

The standard Chapman-Enskog procedure [ll], which gives expressions for the molecular mass, 
momentum and energy fluxes of a mixture in terms of thermodynamic “forces” (in the terminology of the 
thermodynamics of irreversible processes, these “forces” are the concentration, temperature and pressure 
gradients, the components of the rate of deformation tensor and the external mass forces), leads to formulae 
for the transport of coefficients (the multicomponent diffusion coefficients and thermal diffusion coefficients, 
the instantaneous (not the true) thermal conductivity h’ and the thermal diffusion coefficient) in the form 
of the ratio of determinants of order (Nk + 1) to determinants of order NC, where N is the number of 
components in the mixture and 5 is the number of approximations [ll, 221 (see formulae (2.4) and (2.5)). 

Calculation of the true thermal conductivity and the diffusion coefficient, taking account of higher 
approximations using the method in [ll], requires the calculation of Nth order determinants, the 
elements of which are determinants of the (Nk + 1)th order. This procedure has only been carried out 
explicitly in the second approximation and only when calculating the thermal conductivity [23- 251. As 
before, the determination of the thermal diffusion coefficient requires, in these papers, the calculation 
of Nth order matrices with elements which are (NC + l)th order determinants. 

Transport coefficients have only been calculated using this classical scheme in the case of a single- 
element plasma [16, 17,20, 21, 26-281; it is not very suitable for solving gas dynamic problems. 

Calculations of equilibrium transport coefficients [29,30] based on the use of the classical transport 
equations [ll] (the fluxes are in terms of “forces”) should be mentioned. In this case, multicomponent 
diffusion and thermal diffusion coefficients are introduced which give rise to enormous computational 
difficulties and an enormous volume of results if the equilibrium transport coefficients for multi- 
component mixtures are to be calculated in the higher approximations. 

In addition to the difficulty which has been noted above, substitution of the expressions for the fluxes 
obtained in [ll] into the equations of motion of the mixtures (the conservation equations) leads to a 
system of equations which cannot be solved with respect to higher derivatives of the required functions. 
At present, there are no general methods for the effective solution of such systems of equations even 
in the approximation of the various asymptotically simplified versions of the Navier-Stokes equations 
[31,32]. For this purpose, it is necessary to have transport equations which are solved with respect to 
the “forces” via the fluxes. Such equations can be obtained without having to invert matrices if the Grade 
method [33] is used. However, the thirteenth moment Grade method for calculating transport coefficients 
is only equivalent in accuracy to the second Chapman-Enskog approximation [34]. 
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In this paper, we introduce equations for the mass transfer of the elements and heat for thermochemically 
equilibrium flows and for all the effective transport coefficients in them in any approximation, which are 
free from any of the constraints in the papers cited above. These equations are based on simpler and more 
exact equations for the mass transfer of the components and energy obtained previously [35-37] in a form 
which is suitablefor the numerical and analytic solution of problems and are solved with respect to the 
"forces" (the gradients of the hydrodynamic variables) via the fluxes. 

1. CONSERVATION EQUATIONS FOR MIXTURES 
OF GASES AND A PLASMA 

We shall consider the macroscopic (hydrodynamic) motion of a mixture of gases and a plasma (a 
partially ionized or completely ionized mixture of gases) under conditions of thermal equilibrium, that 
is, when the translational (kinetic or gas) temperature of all the components is the same and is equal 
to the temperature of the internal degrees of freedom of the particles. We consider a mixture consisting 
of N components. For the practical calculation of flows in which chemical ~:eactions and ionization are 
occurring at an arbitrary rate, it is convenient to pick out L independent (basis) components for which 
it is possible, for example, to take the chemical elements and an electron component, and R = N - L 
of the components (reaction products). The chemical symbols of the basis components are denoted by 
Bj (j = 1 . . . . .  N) and the reaction product symbols by Ai (i = L + 1 . . . . .  N). Then, without loss of 
generality, the linearly independent, stoichiometric equations of the reactions can be symbolically written 
m the form 

L 
Ai = E vijBj-qi(T), i = L + I  ..... N (1.1) 

j=l 

where vii are the stoichiometric coefficients for the reactions and qi are the heats of the reactions. In 
accordance with representation (1.1), the laws of conservation of mass and charge in the reactions will 
have the form 

L L 
mi = IF. vijmj, ei = Y~ v i j e j  (1.2) 

j=l 1=1 

where m/, e i are the mass and charge of the ith particle. We now define the relative, or henceforth, simply 
the mass concentrations of the elements c~ (j = 1 . . . .  , L) and the mass diffusion fluxes of the elements 
j ,  - j (j = 1 . . . . .  L) in accordance with the stoichiometric representation of the reactions (1.1) as follows: 

N m. N m. 
c;=c j+ ~, Vki""@-JCk, J ~ = J j +  5". vkj-i~J k (1.3) 

k=L+l mk k=L+l rl~k 

Then, the system of Navier-Stokes equations, which expresses the laws of conservation of mass, 
momentum and energy in the mixture can be written in the form [38] 

~ t  p N +div(pv)=0, pv= Y. pkvk (1.4) 
k=l 

P"~'t +divJ: =0, P=~Pk, j=l ..... L (1.5) 
k=l 

dci 
P"~'t +divJi =wi, i=L+I ..... N (1.6) 

d v  bl 
P'~'= Z PkFk-Vp+div~ (1.7) 

kfl 

( . , 2  / N ,, 
p d  h'v-~jffi.~.rk=t y pkFk "vk +div('~.v-J¢), h=t__, ~* ckhk (1.8) 

p PkT ,  1 ~, N = - - -  "~', p=~,  nkm k, n = ~  n~ (1.9) 
m m kffil mk kffil k=l 
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Here, Pi --- nimi, ni, vi, ci = pi/P, xi = ni/n = (m/mi)ci, Ji, wi, Fi, hi are the mass density, the number of 
particles per unit volume, the mean statistical velocity, the mass relative or simply concentration, the 
relative molar concentration, the vector of the mass diffusion flow of the ith component, the rate of 
formation of mass of the ith component per unit volume due to reactions, the mass force acting on the 
/,th component and the specific enthalpy of the ith component, respectively. Also p, v, p, h, T, m, n, Jq, 

are the density, the mean statistical mass velocity of the mixture, the pressure, the specific enthalpy 
of the mixture, the temperature and average molecular mass of the mixture, the total number of particles, 
the vector of the total heat flux and the viscous stress tensor of the mixture as a whole, respectively, 
and k is Boltzmann's constant. 

Equation (1.4) is the continuity equation for the mixture as a whole, Eqs (1.5) are the equations for 
the diffusion (mass balance) of the elements, Eqs (1.6) are the equations for the diffusion (mass balance) 
of the components, that is, of the reaction products, Eq. (1.7) is the momentum equation for the mixture 
as a whole, Eq. (1.8) is the energy equation for the mixture as a whole and Eq. (1.9) is the equation of 
state for a mixture of ideal (non-dense) gases. 

As the elements, one can select any set of independent chemical components from which it is possible 
to obtain all the remaining components by writing out the independent reactions in the form of (1.1). 
If the gas is ionized the electron appears as a further element together with the others. However, any 
ion can also be chosen instead of the electron. 

When solving actual problems it is convenient to use the N - L equations for the diffusion of the 
reaction products (1.6) and the L equations for the diffusion of the elements (1.5) with zero right-hand 
sides (null sources) since no element is created or disappears in the reactions but only passes from one 
component to anothe.r. 

2. MASS- AND HEAT-TRANSFER EQUATIONS SOLVED WITH 
R E S P E C T  TO THE FLUXES (FLUXES VIA " F O R C E S " )  

In order to close the system of equations (1.4)-(1.9), it is necessary to have explicit expressions for 
the fluxes Ji(i = 1 . . . .  , N), Jq and ~, the so-called transport equations and, in addition, expressions for 
the source t e r m s  14) i ( i  x= 1 ,  . . . , N ) .  The transport equations for mixtures which only slightly deviate 
from the state of local thermodynamic equilibrium arerepresented in the form of linear relations which 
associate the "fluxes" with the corresponding thermodynamic "forces", that is, with the gradients of 
the hydrodynamic variables. The expression for the viscous stress tensor (the momentum transport 
equation) ~ in the Navier--Stokes (linear) approximation for the gas mixtures as a whole and the diffusion 
approximation has a well-known form which is identical to the equation for a homogeneous gas and is 
not given here. The expressions for rb i are also not presented here. 

We will initially give the equations for the mass transfer of the components in a multicomponent, 
partially ionized mixture of gases in the well known classical form [11] (fluxes via "forces") 

N mira j 
J i :PY-.  _~Dodj -DrvlnT, i : l  . . . . .  N (2.1) 

j=l r a -  

N N D r 
Jq = -~'VT + ]~ htJ k - nkT ]~ d t (2.2) 

k=l k=l Pk 

VX i ..I.(X i _ c i ) V i n p +  c. t¢ ) P(~--t ptvt-pFi , i = l  .. . . .  N (2.3) di 

where di are the vectors of the diffusion "forces". 
The multicomponent.diffusion D~j and thermal diffusion D~ coefficients are given by the following 

expressions in any approximation ~, for determining them in the form of series in Sonin polynomials 
[11] 

3Pxi ( 21rkT ] ~ 
D# (~) = 2mj det q k, mi ) 

0 Sis 0 ... 0 
n0&-t 

0 . . .  

: : _" : : 

0 '~rs-~-l'° "~rs°~-l'l ... q~-l.~-] 

, ~ > 1  
(2.4) 
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D/r(~) = 15ni(2graikT)~ 
4 det q 

i> 2, D/7"(1) -= O. 

0 5/~ 0 ... 0 

0 q ~  q ~  ... q°r,~'- ' 
nr q~O q~.l "-" q ~ - i  

~2,~-I 0 q~ q2rls " ' "  qrs 

~,-10 _~-1,1 . . .  q~-I.~-I 
q r s  " I l rs  

where qr mp is an N x N square matrix composed of the elements 

, ~. D r = 0  (2.5) 
k=l 

and det q is a determinant of order N~ × N~ which is obtained by crossing out the first row and the first 
column from the numerator in (2.4) or (2.5). 

The quantities Q~,jP are expressed in terms of complete integral brackets ("bracket" integrals) 
which, in turn, are expressed in the well known form in terms of collision integrals (~  are integrals) 
which depend on the pairwise interaction potential [11, 41]. It is important to note that D/T(1) = 0, that 
is, the thermal diffusion coefficient has a non-zero value, starting from the second approximation. 

Hence, the equations for the mass transfer of the components in the standard Chapman-Enskog 
procedure are given by expressions (2.1) with coefficients (2.4) and (2.5), which represent the ratios of 
the N~ + 1 order determinants to N~, order determinants. As a rule, Eqs (2.1) with the exact coefficients 
(2.4) and (2.5) are not used in this form when solving actual hydrodynamic problems because of their 
complexity, in particular, in the case of partially or fully ionized mixtures when it is necessary to take 
account of higher approximations. 

The coefficient ;~' in (2.2) is given by 

75k (2nkT) jA ~.,(~) = -  
8 det q 

the expression [11, 16] 

0 0 nj/  m~ 0 ... 0 
00 oJ 02 q0,~-I 

0 qq qij qo "'" ' d  

1o II 12 _1,1~-I 
n i  qij q i j  q i j  . . .  q i j  

20 21 22 ~2,~,-I 
0 q i j  q i j  qij . . .  I i i j  
: : : : : : 

0 q~-I.0 q~-l,I q~-i,2 ... q~-lA-I 

(2.6) 

and has a non-zero value, starting from the second approximation, which is analogous to the result of 
the calculation of the thermal diffusion coefficient (2.5). 

It is important that the following point be noted. The coefficient ~.' is not equal to the conventionally 
defined thermal conductivity. According to expression (2.2), ~.' can be interpreted as the thermal 
conductivity of a multicomponent mixture in which there are no diffusion "forces" dg (i = 1 . . . . .  AT). 
If only a temperature gradient, which is constant throughout space, is created in an initially, spatially 
homogeneous gas mixture and the thermal conductivity is measured up to the instant of time when the 
diffusion thermal effect (the last term in (2.2)) manifests itself, then this measurement will give the 
coefficient Z.'. However, concentration gradients appear with the passage of time and the diffusion forces 
will increase until the diffusion flows J i  disappear (until a steady state occurs). Measurement of the 
thermal conductivity in this steady state also gives the true thermal conductivity L. 

In order to obtain an expression for the true thermal conductivity L in any approximation and, 
correspondingly, the heat flux, it is necessary to solve transport equation (2.1) with respect to the vectors 
di (i = 1 . . . . .  N). The formal solution can be written in the form 

p s p t ¢  t:ikt~k 71n T 
d/=~'TI~.__ 1 Ei~jk + n--~-- ~.1 ml 

= m k 
(2 .7)  

where E;k are the elements of the matrix which is the inverse of the matrix with the elements Dkimg. 
Substituting solution (2.7) into (2.2), we obtain the required expression 

2FOrt. 

"7 k T t iy - x'-'~ ~ -"~i l~ii "mOv po f i, j = l . . . . .  N; m,p=0,1  ..... ,~-1 
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t¢ (h ._Pk  T ~, DrE~'~ 
(2.8) 

with the true thermal conductivity, which is equal to 

X= k '+Pk ~, ~ EoD rDr (2.9) 

n i=lj=l p i m j  

The double summation (the last term) in (2.8) is the diffusion thermal effect and the coefficients in 
front of Ji, like the double summation in (2.9), are complex expressions in which is the inverse of a 
matrix, since the coefficients Eik are the elements of a matrix which is the inverse of a matrix in which, 
in turn, the elements are ratios of determinants of orders (N~ + 1) and N~. In the case of unionized 
mixtures, when the thermal diffusion coefficients are small, the contribution made by the double 
summation to the thermal conductivity is small (of the order of a few per cent [11]). However, in the 
case of a plasma, this leads to an appreciable error, since the presence of electrons in the mixture leads 
to the appearance of terms in (2.9) with small denominators, proportional to me and mE, which greatly 
increases the contribution due to the effect of thermal diffusion [39]. Calculation of the dissipation 
function, as well as calculations using formula (2.9), show that the instantaneous value of the thermal 
conductivity is greater than the true thermal conductivity, that is, ~.' > Z.. For example, ~.' -~ 1.3~. [16] 
in the case of a completely ionized hydrogen plasma. 

Hence, the classical Chapman-Enskog approach in [11] give extremely complex expressions for the 
true thermal conductivity and the thermal diffusion coefficient which are not very suitable for solving 
problems in gas dynamics. 

3. MASS AND HEAT T R A N S F E R  EQUATIONS,  
SOLVED WITH RESPECT TO THE G R A D I E N T S  

OF THE H Y D R O D Y N A M I C  VARIABLES 
( " F O R C E S "  VIA FLUXES)  

We will now derive simple and accurate transport equations in any approximation which are equivalent 
to (2.1) and (2.2). The idea behind the derivation of these transport equations was put forward in 
[32, 40] and finally implemented in [35]. 

In any approximation, the equations for the transfer of mass of the components (the Stefan- 
Maxwell relations) take the form [35] 

xixJij(g)l__.z.~ ji ~ kri(~) VlnT' i=l  ..... N 
N 

di = g (3.1) 

where J~j = fji = (1 - 9ij), the correction coefficients for the higher approximation, are equal to 

~o(~) = 2 ~o0) 
3 xix j det g 

0~ _0.g-i 
0 g j s  "'" ISis 

. I , ~ - I  
. . .  

ri eJ rs • "" o r s  

>I 2,, tpu(l)-= 0 (3.2) 

N xixj I ~.~______~ q,~, 
q)iJ(~)=cPYi(~)' j=l ~" ~ 90(~)=O' g,~s = n~2rtkT rs 

i, j r ,  s=  1 .. . . .  N ;m ,p=O,  1 ..... ~ - 1  

where g'~,~P are N × N square matrices composed of the elements grr~ p and det g is the determinant 
obtained from the determinant in the numerator of (3.2) by crossing out the first column and the first 
r o w .  

In any approximation, the thermal diffusion relations kr~ have the form [35] 
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0 x~ 0 ... 0 
_ l , ~ - I  

5 ... ,,., 

2det g I ! : : : 
i g~-,.0 -,~*~-I'1 mrsQ'~-1'2 • • • 5r.,~-~-I'~-I 

, i = 1  . . . . .  N 

'N 
E krj(~)=O, ~,~>2, kri(l)--o 

j = l  

and are expressed in terms of the thermal diffusion coefficients D/r(~) as follows: 

L p; J 

(3.3) 

(3.4) 

The approximate Stefan-Maxwell relations, given in [11] are obtained from the exact relations (3.1) if 
we put ~ = 2 and~j = 1 in them, which corresponds to taking account, non-consecutively, of the diffusion 
coefficients in the first approximation and the thermal diffusion coefficients in the second approximation. 
In order to obtain the correct Stefan-Maxwell relations kTi in the second approximation, we must put 

= 2 andJ~j(2) = 1 - qgi j(2)  in (3.1), where 

I 01 q),j(2)= 2 ~u(l) o g j,, 
3 xix idetg glO g~ 

It is important to note that the coefficients kri(~) are expressed more simply by formula (3.3) than the 
thermal diffusion coefficients (2.5) (the determinants are N orders less!). 

According to the theory in [35], in the total heat flux in any approximation has the form 

N 
Jq --- -X(~)VT + ~ hyJj + nkT ~. Jj 

j=t j=l Pj 
(3.5) 

where the true thermal conductivity, in any approximation, is given by the expression (compare with 
(2.9)) 

I> 2, k(l)--- 0 (3.6) z(~)= 

0 x, 0 ... 0 

xr g~ g~2 ... g~ - ,  
7 5  0 . . .  

8 detg[ i0 : : : 
p~-l,l _~-1,2 o~-I,~-I 
egr$ ~r$ " • • 8r,~ 

If we confine ourselves to the second approximation (~ = 2), then an expression is obtained from general formula 
(3.6) which is identical to the expression from [23] if account is taken of the fact that 

This expression from [23] has been considered previously [11] as an approximate formula. If we put ~ = 2 in 
expressions (3.3), these expressions are found to be identical to the coefficients kri(~) (i = 1 . . . . .  N) presented 
solely in the second approximation in [41]. It is interesting to note that the thermal conductivity X(4) has earlier 
been postulated [17] as an approximated expression for the thermal conductivity in the fourth approximation. 
Actually, it follows from the derivation of formula (3.6) that this will be the exact fourth approximation. 

Hence, the transport equations with the exact and simpler transport coefficients are obtained without 
the double inversion of matrices and serve as a basis for solving hydrodynamic problems associated 
with investigations of the flows of a multicomponent plasma and, in particular, as if they are specially 
represented in a form which is convenient for converting the equations of motion of multicomponent 
mixtures of thermochemically equilibrium flows to canonical form with a complete set of all the effective 
transport coefficients, which will be done later. 
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4. E Q U A T I O N S  FOR THE MASS T R A N S F E R  OF THE C O M P O N E N T S  
IN A Q U A S I N E U T R A L  PLASMA 

The practical absence of space charge outside a sphere of radius ~.D (kD = [kT/(4nnee2)] t/2, that is, 
the Debye radius, where ne is the number density of electrons and e is the electron charge), is a 
characteristic feature of an ionized gas, which is called the ambipolar or, more precisely, the quasineutral 
region. The transport equations (3.1) are substantially simplified in this case. The mass forces Fg 
(i = 1 . . . .  , N) that appear in (2.3) (the magnetic field induced by internal currents will be small as a 
relativistic effect), will be determined by the electric field E(Fi = Eei/mi) which is induced by charge 
separation: when there are concentration, pressure or temperature gradients, the electrons, due to their 
relatively low mass, will diffuse at a far greater rate, dragging ions behind them. 

The small induction of the space charges will generate exceedingly, strong electric fields which will 
force the plasma to make a rapid return, after a time z = (mE4nnEeZ) 1/2 which is much less than the 
time between collisions of the particles, to a state of electrical neutrality, which is expressed by the 
condition 

N N 
Y, xke k = 0  or Y~ ekVx k =0  (4.1) 

k=l k=l 

Substituting Vxi from relations (3.1) into (4.1) and taking account of (2.3), where the mass forces are 
equal to F i = Eei/mi, we obtain an expression for the electric field vector 

k T~ [ ~¢ n.q. n u "1 
E = - - - C , i / Z  L x, Aik(~, -~ i ) J '+  Y. z k % V i n p -  ~ z k k n V l n T  ] ei Li=lk=l k=l k=l 

(4.2) 

x'e l ei - k=l ' t ~ l  = n ° ~ i j ( l ) f i ' f l ( ~ ) '  n =  k=lZ nk (4 .3)  

Here, the resistance coefficients Aij : Aji have been introduced for convenience. 
Substituting E into the expressions for the mass forces Fi, occurring in the equalities (2.3), we obtain 

from (3.1) the Stefan-Maxwell relations for a quasineutral mixture of gases 

N (0) (0) , g(O)i ,  
d i - V x  i + kpi In p + kri  V in T = - A i J  i + x i ~ "ik  ° k ,  i = 1 . . . . .  N (4.4) 

k=l 

where 

N N 
"'p,k(O) -~ kpi -- Xi~i • ¢k~k '  ~Tib(O) "~ kTi -- X i ; i  E ~skTs 

k=l s=l 

N N l 
~'ikR(0)=Aik+~i~ X r ( ~ k - ~ r ) A r k ,  Ai  = ~" XkAik '  Ji" = ~ - J i  

r=l k=l m i 

By virtue of condition (4.1) and the definition kpi = x i -  ci, the coefficients in (4.4) satisfy the following 
relations 

N N N N 
E ~¢o) )£ l.(O)=o, E ~ x t ° ) = A , ,  E x k ~  =1  • "pi m ~Ti "~iVik 
i=1 i=1 i=l i=l 

~. _ ,.(o) . ~.(o) = O, ~ ~ . x(o) 
;~i~pi ..~ ~i~.Ti -~i~.iVik ~ ZkA k 

i=l i=l i=l 

(4.5) 

Hence, in the case of a partially ionized gas mixture, there will be N - 2 independent relations (4.4) 
and, for a mixture of neutral components, there will be N - 1 such relations. 

A Debye region exists close to the surface past which the flow occurs in which the asymptotic solution 
(4.1), (4.2) does not hold. For zero charged particle densities on the surface, solution (4.2) for E has a 
singularity. In order to obtain the solution for E in this Debye layer (L o ~ L), it is necessary to construct 
an internal solution using a scheme which has previously been described in [42]. 
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5. S T E F A N - M A X W E L L  R E L A T I O N S  FOR 
T H E  MASS D E S C R I P T I O N  OF D I F F U S I O N  

When solving hydrodynamic problems, it is more convenient to have the Stefan-Maxwell relations 
(3.1) written in terms of Vci instead of Vxi, due to the fact that the diffusion equations (1.5) and (1.6) 
are written in terms of the mass concentrations c~ and the mass diffusion fluxes J~. Since, c~ = &mi/m 
we obtain 

N mimk" (xkVxi _ x i V x k ) ,  i = 1 ..... N Vci = X 7 
k=l 

Substituting Vxi from (4.4) into this, we find the mass transfer equations in a quasineutral plasma, written 
in terms of the mass concentration gradients 

to) co) Ai N ( 5 . 1 )  
Vc i +Kpi VIn p+ Kri VInT = - - - J i  +ci Y. A~)J~, 

m k=l 

K(0) 
N • N 

pi = "-'~kpimi - ci Z m" kt,., - ci~i Z ~skps 
s=l m s=l 

K(o) mi ~ ms k N 77 = m k T i - C i  ~ T' -C i~  y~ ~skT* 
m s=l  m s= l  

A (°) = % + E x, % £ x,(;j - L ) a j ,  
s=l  m s=l  

N 
~=~i- y" Ck~k' i,j=l ..... N 

k=I 

The coefficients obtained above satisfy the conditions 

where 

# . ^co) N ek (5.2) ~.N "'pkt'(O) = "'TkV(O) = O, ~. t.k~ki = ~ A  i, ~., C k 
k=l k=l k=l m k=l mk m 

i = 1  . . . . .  N 

N N 
~ .  V (0) ek _ ek _ 

,-p~ ~ -  Y. ,-r~v(°) ~ _ 0 
k=l m k k=l mk 

For a plasma, in the general case, there will therefore be N - 2 independent relations (5.1) and, for 
mixtures of uncharged components  (ei = 0, i = 1 . . . . .  N), there will be N - 1 such relations. 

6. T H E  S T E F A N - M A X W E L L  R E L A T I O N S  F O R  
T H E  D I F F U S I O N  OF E L E M E N T S  

In accordance with the definition of the concentrations and the diffusion fluxes of the elements (1.3), 
Jj (j = 1 . . . .  , L)  can be eliminated from Eqs (5.1) and the equations for the mass transfer of the elements 
c~ (j = 1 , . . . ,  L)  and the equations for the transfer of the concentrations of  the reaction products 
ci (i = L + 1 . . . . .  N) can be obtained separately 

V c ; + K ; j V l n p + K ; j V I n T =  A'~)mJ;+m'i t A,tJ t +m._.~) ~ . , - * *' 8jkJk, j = l  ..... L (6.1) 
m I=l m k=L+l  

V c i + K, i,o)V i n p + K~)V ln T = - Ai s i + ci t ,,,Co) ,, t'" +el y.N At:k) j~, ' 
m /=1 k=L+l 

i = L + l  ..... N 
(6.2) 

where 
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* =/(¢o) ,v m- , ~ 
Kpj "'PJ + ~ vk J~I,,(o) = v(o) K(o) , - # ,  K1?i t~rj + Vl~j Tk 

k = L + l  mk k = L + l  tttk 

A j t = x j A j t +  Y~ x~v~jAkl+xj x.,. m m 
k = L + l  s=l  

, N , ' ~ N  

k = L + l  Js=l 
, . , L , L 

~)ji = v k j ( A i - A t ) + a j k  - 5". VklAfi ,  A(];~-A(iOk)-- ~. ,klt_tilx, A(0) 
I=l  l - I  

i , j , k , l =  1 . . . . .  N 

1 
J j ,  Cj = JJ = m-"~. 

The relations for the coefficients 

m j x j  , N 
, x j = x j +  ~ VkjXk; j = i  ..... L 

m k=L+l 

L , ~, ,_. L , L , 
Kp)= L =0, ~ mjAj t=mtAt ,  Z mjSyk =0 (6.3) 

.j=l j=t j=l j=t 

k = l  . . . . .  N 

hold by virtue of the conservation of mass (1.2) in reactions (1.1) and conditions (5.2). 
Relations (x~ = 0) 

AEt = 0, l = 1 . . . . .  L, l ~ E; AE E = AE (6.4)  

Aei=vi~Ai ,  ~) i=O, i = L + l  ..... N; K E=KrE=O 

also hold by virtue of charge conservation (1.2) in reactions (1.1). 
The subscript E refers to the electron. 
Hence, in the case of the diffusion of elements in a plasma, there will be L - 2 independent 

Stefan-Maxwell relations (6.1) and, for a mixture of electrically neutral gases, there will be L - 1 such 
relations. Relations (6.2) represent a system ofR = N - L  independent equations which, together with 
the R = N - L equations for the diffusion of the reaction products (1.6), form a closed system for 
determining the concentrations ci and the diffusion fluxes Ji (i = L + 1 . . . . .  N) of the reaction 
products. Equations (1.5) and (6.1) determine the concentrations cf and the diffusion fluxes J7 of the 
elements. 

I n  conclusion, we will now represent the system of mass transfer equations (6.1) and (6.2) in an 
improved form by introducing generalized, dimensionless Schmidt numbers Si = (it/m)Ai (It is the 
coefficient of viscosity of the mixture), which are accepted in problems of hydrodynamics. We then obtain 
the mass transfer equations for the elements 

, _  S j  j ,  m j S j  f L , ,. N , "~ 
dj----~-j+----'~-~,~ Ixj,,J t +,=~L+I3jkJk), j = l  ..... L (6.5) 

and for the reaction products 

miSi ( ~ ,, N 
d i = - S J j i + x i ' - ' ~ , ~  O~ilJt I.t + k__~L+t[~ikJ~, ) i = L + I  .... N (6.6) 

where 

* ° )  , 

* _ ~  _ it [ ~ j k = - -  ~ i k =  (6 .7)  
_ Ajl  Otil - ~ ,  

Ot fl A j  ' A i A j  ' A i 

In (6.5) and (6.6), the vectors d~ and d i a r e  the left-hand sides of Eqs (6.1) and (6.2), respectively. 
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7. D I F F E R E N T  FORMS OF THE ENERGY AND HEAT INFLUX 
EQUATIONS FOR A M I X T U R E  

To obtain the complete system of effective transport coefficients for thermochemically equilibrium 
flows, it is necessary to start from the exact energy equation (1.8). We introduce into express (3.5) for 
the total thermal flux the specific enthalpy of the mixture 

N dh i 
h = e + P =  ~ ckhk; - -  i=1 ..... N 

P k=l dT = cpi '  

where cpi are the specific (per unit mass) heat capacities of the components and h i are the 
specific enthalpies of the components, defined apart from their additive constants by the expression 
hi = ~ cpidT + hio. Then 

u ~' (7.1) 
dh = cpdT + ~ hkdc k, c o = k~=lCt,tcCk 

k=l 

whence 

u lacp 
~,VT = P dh - I x  ~ hkdc k, (~---- (7.2) 

The total heat flux (3.5), expressed in terms of the temperature and the specific enthalpy of the mixture, 
will then be 

_ l a  u 
,q (7.3) 

where cr is the Prandtl number, defined in terms of the coefficient of viscosity of the mixture ~t, the 
thermal conductivity of the mixture ~, and the heat capacity of the mixture cp; h l  is the specific 
enthalpy of the ith component written taking account of thermal diffusion (see (7.11)). 

Substituting expression (7.3) into Eq. (1.8), we obtain the energy equation, written in terms of h in 
the substantial form 

ate, z ) o, g 
(7.4) 

Subtracting the kinetic energy equation (the scalar product of the momentum equation (1.7) and v) 
from Eq. (7.4), we obtain the heat influx equation, written in terms of the enthalpy of the mixture 

dh ~-~-P+div Ix Vh-  ~, hkVc k + h i s  k + ~ : ~ +  Y~ p~Fk-J k 
P--dTt = ot  k=, k--, 

(7.5) 

It is now natural to introduce into Eq. (7.4) the total enthalpy of the mixture H = h + t92/2 in terms 
of which this equation is written in the most compact form 

dH ~ P _ d i v j H  o 
9 dt = ~ + Z PkFk "vk (7.6) 

k=l 

(7.7) 

Note that the energy and heat influx equations, which have been described above in different forms, 
retain their form regardless of the fact of whether reactions occur at a finite rate in the flow or in an 
equilibrium manner or are frozen, In the account of the energy (or heat influx) equation which has 
been presented, the heats of chemical reactions appear in the internal energy and enthalpy of the mixture. 

We next explicitly introduce the heats of reaction and thereby reveal the possibility of writing the 
energy and heat influx equations in terms of the temperature. We transform the energy and heat influx 
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equations, explicitly separating out the terms which contain the heats of chemical reactions, including 
ionization reactions. 

Note that the actual occurrence of reactions does not, as a rule, correspond to the notation of (1.1) 
and, furthermore, the actual number of reactions is, as a rule, greater than N - L. The elucidation of 
the actual mechanism of the reactions which are taking place and the number of such reactions is a 
separate problem, the results of the solution of which have no effect on the conclusions of this section. 
However, using the independent reactions (1.1), we introduce all the independent heats of reactions 
in terms of which the heats of all the remaining reactions which are actually occurring are expressed 
(Hess' law). According to the first law of thermodynamics, the heat of reaction, required to form unit 
mass of the product Ai (i = L + 1 . . . . .  N) at a pressure p and a temperature T, is determined by the 
specific enthalpies of the components hi (i = 1 , . . . ,  N) in accordance with the form of reactions (1.1) 

L rn) 
-q i (T)=hi - j=l  y" vij"-~ihJ' i = L + I  ..... N (7.8) 

From (7.8), we obtain 

T L m . T  

_qi(T) = _qi(O) + ~cpidT_ ~, Vi ) ""1 ScpidT ' 
0 j=l mi  0 

i = L + 1 ..... N (7.9) 

where qi(O) are the heats of reaction at absolute zero and are specified parameters of the problem. 
Formulae (7.9) serve for converting heats of reaction, specified at one temperature, to another 
temperature. 

Hence, in order to define the model it is necessary to specify the heat capacities of all of the 
components cpi (i = 1 . . . . .  N) and N - L independent heats of reaction qi at some fixed temperature 
T, for example, T 0. The enthalpies of all the components will be determined to L arbitrary additive 
constants hi0 (j = 1 . . . . .  L), which do not have values by virtues of the invariance of the energy (and 
the heat influx) equation with respect to the values of these constants [38]. 

We will now write all the expressions (sums), containing the concentrations and their derivatives, and 
the diffusion fluxes, having eliminated the concentrations cj (j = 1 . . . . .  L) and the diffusion fluxes of 
the components, that is, the elements of Ji (J = 1 . . . . .  L) from them, in terms of the concentrations 
cj* (j = 1 . . . .  , L) and the diffusion fluxes of the elements J~ (j = 1, . . . ,  L) and, using formulae (1.3), 
we obtain 

where 

N L N N N 
h= ~, ckh ~ = ~ c )h) -  ~, qkck, dh=cpdT+ Y'. h jdc j -  ~, qkdck 

k=l j--I k=L+l j=l k=L+l 

Z hkVc k+ hrjk = D - Q  
k=l 

D= Y. hjVcj + J , 
j=l 

N a T 
Q = k=z+l y" qkVck +~'qkJk 

(7.10) 

_kr J ;  
h f  = hj + k r ,  - - -  j = 1 . . . . .  L 

m) xj 

L 
q T = q i _  ~ri, [~ri=otri-~, VqlZr); i = L + I  ..... N 

m i j=l 

The total heat flux (7.3) will then be equal to 

Ix t. N 

(7.11) 

(7.12) 

It follows from this last expression that, if, when there is a thermal diffusion effect, one introduces the 
concept of generalized heats of reaction q'/r = qi - [5ri/mi, instead of qi and the concept of generalized 
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specific enthalpies of the basis components h f  = hj + (oLr/mj)kT, instead of h i, the structure of the 
expression for the total heat flux Jq (7.12) will be identical to the expression for Jq when there is no 
thermal diffusion effect. 

We will now write the heat influx equation in terms of the enthalpy of the mixture h. From (7.5), we 
obtain, using (7.12) 

dh @ + d i v F g ( V h _ D + Q )  +'~:E+ Y. F k-J* (7.13) 
P-~t =dt L(i *=, 

The energy equation, written in terms of the total enthalpy, will be 

+ z (7.14) 
a, I<,L t 2 ) 

Finally, we write the heat influx equation in terms of the temperature. Substituting the expression 
fordh from (7.11) into Eq. (7.5), we shall have / <'<; " dT+ ~ h j - - ~ ' -  ~. q, 

P %-~" ./=l k:L+l 

~t o L r , + a  r l ,  +i : i+•pkFk'vk =dp + div -- c p V T -  -- ~. hj J j q 
dt L ok 7_I *:' 

or, when account is taken of the diffusion equations of the elements (1.5) and the reaction products 
(1.6), as well as equalities (7.8) and (7.10), we finally obtain the heat influx equation, written in terms 
of the temperature, in the form 

dT dP+div ~ V r - k T  ~r~Jk + ~ qk fvk- -~  Vh, J k + i : ~ ' + ~  pkFk'vk (7.15) 
pcp d-'7 = d"t *=l mk k=t.+l k--I k=l 

8. THE N A V I E R - S T O K E S  EQUATIONS FOR FLOWS OF M I X T U R E S  OF 
GASES AND PLASMA IN T H E R M O C H E M I C A L  AND I O N I Z A T I O N  

E Q U I L I B R I U M .  THE E F F E C T I V E  TRANSPORT C O E F F I C I E N T S  

A chemically equilibrium flow occurs when the time taken for the slowest reaction to occur in the 
flow/ch is much less than the characteristic hydrodynamic time tn, for example, the time a liquid particle 
resides in the flow, which is equal to L/v (L is the characteristic length of the flow domain considered 
and v is the characteristic of the flow velocity). In this case, if the temperatures of all the degrees of 
freedom of the particles are the same, then a thermochemically equilibrium flow occurs. In this case, 
considerable simplification of the system of diffusion equations (1.5), (1.6) and (3.1) and the energy 
equations (1.8) and (3.5) is possible, that is, part of the overall system of Navier-Stokes equations 
(1.4)-(1.9), if the conditions of chemical equilibrium are used as the first integrals of the system of 
equations. 

In the case of local thermodynamic equilibrium in the flow, the diffusion equations for the reaction 
products (1.6) in the asymptotic limit as tN/tch ~ oo are replaced by the conditions of chemical equilibrium, 
which, when the reactions are expressed in the form (1.1), will be written as 

L vO Kpi(T ) L 
I~ XY-2---= Vi = ~. Viy-1, i = L + l  ..... N (8.1) 
j=l Xi pVi ' j=l 

These equations are a consequence of the Guldberg-Waage law of mass action for chemical reactions 
and Saha's equilibrium ionization conditions. Equations (8.1) can be written in terms of the partial 
pressures in the form 

L vq 

FI PJ2-- = KM(T), i = L + l ..... N (8.2) 
j=l Pi 
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wherepi are the partial pressures of the components and gpi(T ) a r e  the equilibrium constants (functions) 
which depend solely on the temperature and are calculated in statistical physics. 

We next assume that K i(T) are known These conditions can be considered as first integrals of the 
. " . P . " 

equaUons of motion of a mult~component mixture, which hold at any point in the flow and replace the 
diffusion equations for the reaction products (1.6). These integrals can be used to simplify the energy 
equations (7.13) and (7.14). 

We now express the vectors Vci and J i  (i = L + 1 . . . . .  N), which occur in Eq. (7.14), in terms of VT, 
Vp, Vc~ and J i  (i = L + 1 . . . . .  N) and, in conditions (8.1), we change tothe mass concentrations 

L ,vl j  K p i ( T )  H cJ____= ./=l ci" (pm) v i '  C i - m i  ci ' i = l  ... . .  N (8.3) 

and take the logarithmic differential of these equalities. In the resulting equations, we next replace dc~ 
(j = 1 , . . . ,  L) in terms ofdc~ ' ( j  = 1 . . . . .  L )  and dc: (i = L + 1 , . . . ,  N) using (1.3). We then obtain 
a system of simultaneous algebraic equations for determining dc~ = d c i / m  i 

N , r a i q  i 1, • , ,  
aikdcl,= . . . . .  d l n T + V i  d l n p +  ~, vijdc i , i = L + I  ..... N 

k=L+l  mkT m j=l 
(8.4) 

where 

L aik=a u ~, vijVkj ViV k + ~ ,  v ~ -  vii 
j=l xj  x i xj  

j =  1 . . . . .  L; i , k = L +  1 . . . . .  N 

Here, the van't Hoff isochore equations 

din Kpi(T) miq i 
dT = - - ~ ,  i = L + I  ..... N 

have been used. 
It is clear from (8.4) that the chemically equilibrium concentrations of the reaction products ci 

(i = L + 1 . . . . .  N) and, later, the concentrations of the basis components 

• N m j  
c j = c j -  Y. Vk j - -Ck;  j = l  ... . .  L 

k=L+l mk 

depend on T,p,  c ~ , . . . ,  c~. 
The solution of system (8.4) can immediately be written in terms of the ratio of determinants 

(Cramer's rule). Using this solution, we find the sum which is subsequently needed 

N L , , 
~, mkq kdc'~ = -cprdT + a(v, Q)dp + ~ aj (v , Q)dcj 

k=L+l p j = l  

(8.5) 

where 

I 0 QL+I 

k QL+I a L + I , L + I  

C,r = -    ail: - : 

IQ,, ",,,L÷, 

I - 
0 QL+I 

1 VL+ I aL+l,L+l 

i .. 

[ VN QN, L+I 

• ." ~ .L+I ,N 

" ' "  ( iN,  N I 

• . .  a L + I , N  

• . .  a N ,  N [ 
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aj(v*,Q) = 
]~ , QL+I ... QN 

L+I,j aL+I,L+I "'" aL+I,N 

mjA(a) [: • : 

[ VN, j aN, L+I .. .  aN, N 

j = i  .. . . .  L 

I . I aL+I,L+I .. .  aL+I,N 

A ( a )  = d e t  II a,~ II = " 1! 

I aN, L+ I ... aN, N 

- -  miqi _ Qi 
Q=miqi" Qi = kT - k'-T 

We now return to the calculation of the diffusion fluxes of the reaction products Ji (i = 
L + 1 , . . . ,  N). We take the logarithmic gradient of the equilibrium conditions (8.1), having used the 
van't Hoff  isochore equations here 

L VXj  VXi miqi V In T -  viV In p, i = L + 1 ..... N V q -  ----- 
j -. I Xj X i k T  

and, into these equalities, we substitute ~X i (i = 1 . . . . .  N) from the Stefan-Maxwell relations (3.1) 
which we rewrite in the form 

VX i = - J ~  E xkAik + xi ~ A a J k  - ( x i - c i ) V l n  p -  pkFk - p F  i - k r i V l n  T 
k=l k=l I 

Next, if the diffusion fluxes of the components of the elements Ji (J = 1 . . . . .  L) are eliminated using 
(1.3) and we use the conditions for the conservation of mass and charge in reactions (1.2), we obtain a 
system of linear vector equations for the diffusion fluxes of the reaction products of the following form 

N miq r L 
E b;kJ~ = V inT+  )", d/jJ~.', i = L + I  ..... N (8.6) 

k=L+l kT )=l 

where 

L 
bik = bki = Z 

j=l 
vijvgi A j -  

xj 

L L L 
~, ~. VijVk!Afl +j~= (VijAjk + V k j A f i ) - - A i k  "l'~ik Ai 

j=l  I=l =1 X i 

i , k = L + l  . . . . .  N 
N 

A i = ~ xkAik, i=,! ..... N 
k=l 

A .  L 
d q = A  o + v  0 - j - ~  vitAtj, i = L + l  ..... N; j = l  .. . . .  L 

X i 1=1 

It is important to note that the electric field has not occurred in the defining parameters of the diffusion 
fluxes Jj in (8.6) by virtue of the quasineutrality conditions (1.2), and it has also not occurred in the 
term with Vp. We shall again write the solution of system (8.6) in terms of determinants (Cramer's rule) 
and immediately present the expression for the sum 

N N L 
2 qr jk  )"- T , = mkqk Jk = ~'r v T +  ~,, bj(d, Qr )J j  (8.7) 

k=L+l k=L+l j=l 

which will be required later, where the following notation for the reaction thermal conductivity ~'r and 
the coefficients bj are introduced 
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0 Q/.+l "'" Q~ 

= - -  k QT+I bL+I,L+ I . . .  bL+l, N 

~'r A(b) l i r i 
I a~  bN.,+l ... bN.N 

0 

bj(d, Qr)= 1 dr+Lj bt.+l.t,+l 
mjA(b) i 

dN,j bN, L+l 

A(b) = det II bik - • 
[bM.L+j ... t'M.N I 

Q T  = m i q T ,  

. ,  

• . .  bL+l, N 

• .. bN.~¢ 

Qi r = miq T 
kT 

Expressions (8.4) and (8.6) are central in the case of equilibrium chemical reactions. 
Substituting expression (8.5) for dh into (7.10) and expression (8.7) into (7.12), we find 

L a(v,Q) dp, 
ah = %~eear- X a~ac; c.off = c. +c.r (8.8) 

j=l P 

Jq =-~'eff vT- X byJ; = - ~ [ V h +  X a;Vc;+ byJ; +a(v,Q) (8.9) 
./=t oeef [ j=l 

~tcpeff = ~t(% + %,) 
~'eff = ~" + Xr, O'eff = ~'eff ~" + ~'r 

where the concept of an effective heat capacity of the mixture, c? elf, and effective thermal conductivity 
of the mixture, ~.eff and an effective Prandtl number, o~ff, constructed using the effective heat capacity 
and the effective thermal conductivity, has been introduced. In addition, the notation 

a~=aj(v*,O)-hj ,  b~.---bj(d, Q r ) - h f ,  j = l  ..... L 

has been introduced. 
It is now possible to derive the energy and heat influx equations for thermochemically equilibrium 

flows. Substituting expressions (8.8) and (8.9) into Eq. (7.13), taking account of relations (7.12), we 
obtain the heat influx equation for the case of thermochemically equilibrium flows, written in terms of 
the temperature 

_ , ] 
Pcpeff clt =[l + a(v,Q )] d'~P. *div[~'eff v T  Z (b;-a~.)J; + 

at L j=, 

L N 

+Y~ J~Va~(v*,Q)+~:~+ Y. V k "Jk (8.10) 
j=l k=l 

and, respectively, the heat influx equation, written in terms of the enthalpy 

I't [Vh+ Y. a;Vc;+ b;J; + a ( v ' Q ) v p  +'~:~,+ • Yk'Jk (8.11) dh ~ d P  -1- di  v 

P ~  at loot, L J=' P ',=' 

The energy equation, written in terms of the total enthalpy H, for locally thermodynamic equilibrium 
flows will be 

dH ~r - div J~) A, p-'Z = + 5". PkFk "vk (8.12) 
k=l 
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where 

j ~ ) = _  (leffbt VH+ (Iefflll ~ - v - V  +a(v,Q) VR + p  )=t ~" a;Vc; +--~---t~jJj)J (8.13) 

Hence, it is now possible, using equilibrium conditions (8.3), to eliminate the concentration gradients 
and the diffusion fluxes of the reaction products by using the solution of algebraic equations ((8.4) and 
(8.7), respectively). 

Unlike the case of a homogeneous reacting gas, additional terms, proportional to Vp, Vc~ and J)* are 
omitted in the paper cited above, have appeared in Eq. (8.12) when there are equilibrium reactions. 
The concentrations of the elements c~ and the diffusion fluxes of the elements J~ (j = 1 . . . . .  L) will 
be found from the diffusion equations (1.5) of the elements, supplemented by the corresponding 
transport equations (6.5) of the elements in which it is necessary to eliminate the diffusion fluxes of 
the reaction products Jk (k = L + 1 . . . . .  N) and thereby obtain the Stefan-Maxwell relations for 
chemically equilibrium flows. 

In the case of thermochemically equilibrium flows, only the mass transfer equations for the elements 
are required for the closure of the diffusion part of the system of Navier-Stokes equations. We therefore 

N * , eliminate the sum Y"k=L+l~jkJk from Eq. (6.5) using system (8.6) for this solution. As a result, we find 

where 

~ ~(Y) L N * t 

Z ~j,J, = J~ = -j VlnT+Z vjt~(e)'*'Jt, j = l  ..... L 
k=L+l k=L+l .Aj Aj l=l 

(8.14) 

0 

~(e) ! A;,  H+l bL+I,L+I 
- J  = detllb k II ! 

A~,N bN,L+I 

l i !  dL+l'l 
,L+I bL+I,L+I 

O~) = det ]~bik ll]Sj, u bu, L+l 

bL+l,O 

bu, u 

bL+I,N 

bu.u 

(8.15) 

j , l = l  . . . . .  L 

.~,= qi ~ri i = L + I  ..... N 
kT m i ' 

Substituting expression (8.14) into Eq. (6.5), we obtain the required Stefan-Maxwell relations for 
the diffusion of the elements in the case of thermochemically equilibrium flows 

. ~  mjSj ~. . t , ) . . .  ~(,) * O}'t)), j =  1 ..... L (8.16) d ( e ) - - -  J~  + ,.A, jl o I , U~jl =(aft + -J la t=l 

where the diffusion force vectors dj (e) for chemically equilibrium flows will be 

d~ e) = Vc}+(Kry*---~5~e))VlnT+K;jVlnp, j = l  ..... L (8.17, 

By virtue of relations (6.3) and the expressions f o r  5j (e) and ®~! the coefficients in Eqs (8.16) satisfy 
the relations 

L , ~ , L - (e) L L 
~, KTj = Kpj =0, ~ mjSjotjk =mkS k, k = !  ..... N; ~, mjSjO~ e) =0, ~, mj~)~ e)=O 
j=l j=; j=l )=1 )=1 

Furthermore, in the case of a quasineutral plasma, but, generally speaking, when there is a current in it, by 
virtue of relations (6.4), the following further additional conditions for the coefficients of Eqs (8.16) hold 
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Oy/--0. l = l  ..... L. t , e .  Oy =l 

It  is impor tan t  to note  that,  if all of  the binary coefficients are equal  to one another ,  then 51~ )--- 0. 
In the case of  chemical ly equi l ibr ium flows, there  will the re fore  be  L - 2 independen t  S t e f an -  

Maxwell  re la t ions (8.16) for  a p lasma and L - 1 such relat ions in the case of  electrically neut ra l  gases. 
Equa t ions  (8.16) toge the r  with equat ions  (1.5) for  the diffusion of  the e lements  will also const i tute  the 
diffusion par t  o f  the genera l  p rob l em of  the flow of  the rmochemica l ly  equi l ibr ium, part ial ly ionized, 
quas ineut ra l  mixtures  of  gases and plasma.  In this case also, only the diffusion fluxes of  the e lements  
and the  concen t ra t ion  gradients  of  the e lements ,  which are re la ted by Eqs  (8.16), r emain  in the energy 
equa t ion  (8.12). T h e  mass  t ransfer  equat ions  for  the react ion products  (6.2) or  (6.6) turn into identit ies 
when  account  is t aken  of  re la t ions (8.6). Af te r  solving the p rob lem,  the distr ibution in the flow of  the 
sources of  the masses  of  reactions wi (i = L + 1 . . . . .  N)  can be found f rom the equations for the diffusion 
of  the react ion  products  (1.6). 

9. N U M E R I C A L  C A L C U L A T I O N  O F  T H E  E F F E C T I V E  T R A N S P O R T  
C O E F F I C I E N T S  F O R  I O N I Z E D  A I R  

The equilibrium transport coefficients were calculated using the final expressions derived. We will now present 
some very interesting results. The detailed numerical data are presented in [43]. 

The values of the coefficient (mj/m)~/e) for oxygen (a recalculation is possible for nitrogen) at pressures p = 
1.013 × 105; 1.013 x 10 7 Pa are depicted by the solid curves in Fig. 1 (curves 1 and 2). Over the range where air 
dissociates (4000-7000 K), the coefficient (mj/m)5/e) reaches a value of 0.2 to 0.3. This means that, even in the 
case when thermal diffusion and barodiffusion are neglected (kri = kpi --- K~ = K~j = 0), the diffusion fluxes of 
the elements j (j = O, N, E) due to the differences in the diffusion properties of the components t6 .{e) 0 when 

' ,  J 
the binary diffusion coefficients of all the components are the same) are non-zero when a temperature gradient 
exists. A significant separation of the elements therefore occurs (a result which has previously been obtained in a 
numerical calculation of actual flows of dissociated air [44]). In the ionization region (T ~ 16000-17000 K), the 
effect of the separation of the elements becomes even more substantial ((mi/m) ~/e) ~ 1. The dashed curves in 
Figs 1-3 will be explained later. 

The reactive thermal conductivity ;~r (in formula (8.7)) is shown in Fig. 2 (the solid curves are for the same two 
pressures) and this coefficient can exceed the thermal conductivity for frozen flows several-fold. 

The change in the effective Prandtl number ~eff (Fig. 3) with temperature turns out to be smaller than the 
individual changes in ~'r and Cpr (Cpr is not given here). Over the range where dissociation reactions occur, the change 
in ~eff - 20% while, over the range where ionization occurs, it is - 40% (double ionization has been neglected in 
the calculation presented here and, in the high-temperature domain at low values of the Prandtl number, ~eft is 
found to be of the order of 0.1). The solid and dashed curves |,  2, and 3 in Fig. 3 correspond top  = 1.013 × 103, 
1.013 × 105, 1.013 × 10 7 Pa. 

The values of the dimensionless coefficientA = a(v, ~)(p/ph), which appear in the heat influx equation (8.11) 
are shown in Fig. 4 for the two pressuresp = 1.013 x 10 ~, 1.013 x 10 7 ( c u r v e s  1 and 2 correspond to these values). 

The coefficients from the same equation a~h, b'f/h are shown in Fig. 5 for the elements O and N, which show 
the appreciable effect of the separation of the elements on the heat flux (see the additional terms in the expression 
for the heat flux (8.9) appearing after Vh). Here, p = 1.013 × l0 s Pa. 
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Fig. 1. Fig. 2. 
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Numerical calculations of the effective transport coefficients taking account of the higher approximations showed 
good convergence over the temperature ranges where there is dissociation and ionization. Values of (mj/m)Sj (e) 
for the fourth approximation (~ = 4, the solid curves) are presented in Fig. 4. The dashed lines are the values 
(mj/m)~)j (e), calculated ignoring thermal diffusion (kr/-~ 0) and without taking account of the correction factors to 
the resistance coefficients Ai / (formula (4.3) whenfq = 1). A difference of 2-5% is only observed in the region of 
partial ionization. The contribution to ~'r from the effect of thermal diffusion (kr /~ 0) does not exceed 5% and 
the correction factors (Pij make a contribution of - 2% to ~,, (the dashed curves in Fig. 2 when kri = 0 and 
¢0ij = 0). 

Since the higher approximations are not very important in the calculation of L, the number of approximation 
necessary to calculate creff is determined by the accuracy of the calculation of the ratio ~(~)/Z(~). It suffices to calculate 
L(~) with an accuracy of 2% in the third approximation and ~t(~) in the second approximation. The values of ¢ref f, 
calculated taking account of higher approximations, are represented by the solid curve in Fig. 3, the values of aef f, 
obtained when Z(~) is calculated in the second approximation (~ = 2) and the coefficient ~t(~) is calculated in the 
first approximation, is shown by the dashed curve in this figure). The values of Oeff, calculated without taking account 
of the correction coefficients to Aij (¢Pij = 0,fij = 1) and without taking account of the thermal diffusion relations 
(kri ~ 0), are denoted by the small crosses in Fig. 3. Hence, in the case of an air plasma up to temperatures of less 
than 2 x 104 K, the contribution OfkTi and ¢p~j in the calculation of ¢ref f is less than 5%. However, it is necessary to 
calculate the coefficient of viscosity and the thermal conductivity in the second and third approximations respectively. 
An incorrect choice of the number of approximations (up to the point where convergence of the coefficients is 
obtained as ~ increases) in the calculation of ~¢ff can lead to an error of up to 60% in the region where intense 
ionization occurs. 
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The effect of the accuracy of the calculation ofkri(~) and <p/j(~) ®~}(the second formula of (8.15)) in the equation 
for the transport of the elements and of a~ and b~ in the equation for the total heat flux (8.13) is found to be the 
same as in the calculation of 8/e). 

The concluding Fig. 6 reflects the situation which has been described, where the domains A, B, C and D, separated 
by curves 1--4 which indicate the boundaries, reflect the situation which has been described. It is in these domains 
that the transport coefficients k(~), ~t(~), kri(~), q~ij(~) have to be calculated in the required approximations ~ in 
order to ensure an error for the effective transport coefficients to be no worse than -5 % in the case of an air 
plasma. 

10. C O N C L U S I O N S  

Finally, we draw a number of fundamental conclusions. 
1. The effect of barodiffusion in relations (2.3) and the dependence of the right-hand side of the 

equilibrium conditions (8.3) on the pressure mutually compensate one another by Virtue of the law of 
conservation of mass (1.2) in reactions (1.1) and, therefore, the diffusion fluxes of the reaction products 
Ji (i = L + 1 . . . . .  N), as follows from system of equations (8.6) and unlike the concentrations of the 
reaction products which are determined from (8.5), do not depend explicitly on the pressure gradient. 

2. When account is taken of thermal diffusion in the energy equation, this leads to the replacement 
of the specific enthalpies h i of the basis components by the effective enthalpies: h ;  = hj + kTot'ri ( j  = 
1 . . . .  , L)  (7.11) and the heats of reaction qi by the "effective heats": q~= qi - [3'ri (i = L + 1 . . . . .  N) 
(7.11). 

3. Equations (8.4) and (8.6) and their solutions (8.5) and (8.7) are obtained without any assumptions 
regarding the quasineutrality of the mixture and the absence of an electric current in it. If such 
assumptions are introduced, it does not change the form of the solutions of (8.5) and (8.7) nor 
consequently, the form of all the effective coefficients and the equations of the diffusion-thermal part 
(1.5) and (8.16), (8.12) and (8.13) of the overall system of Navier-Stokes equations. 

4. If a partially ionized, chemically equilibrium mixture of gases is formed by the heating of an initially 
two-element mixture of gases, then the diffusion flux of thej th  element will depend solely on the single 
gradient of its own (jth) concentration and the gradients of the remaining hydrodynamic parameters, 
that is, the cross-effects of barodiffusion and thermal diffusion. 

5. The existence of components in a moving gas mixture with unequal binary diffusion coefficients 
or taking account of thermal and barodiffusion leads to a state of affairs where the concentrations of 
the elements c~ (j = 1 . . . . .  L)  do not retain a constant value in the flow, even when fhere is no delivery 
(blowing) of the substance from the walls around which the flow occurs. For this reason, the diffusion 
fluxes of the elements J~ ~ 0. In other words, Eqs (1.5), together with relations (8.16), do not, in general, 
admit of the trivial solution J*] = 0, c~ = C~w = const (j = 1 . . . . .  L) due to the existence of the effects 
of multicomponent diffusion of components with different binary diffusion coefficients. This leads to 
a state of affairs where the chemically equilibrium composition of the mixture at the point being 
considered will not only depend on the pressure and temperature but also on the concentrations of the 
chemical elements, which change in the flow in accordance with (1.5) and (8.6). This has not been taken 
into account in any of the papers cited above. This is the main difference between an exact calculation 
of the equilibrium composition of the mixture in the flow and the numerous approximate calculations 
for a fixed or moving mixture or an inviscid, non-heat conducting and diffusion-free gas mixture, when 
the element chemical composition is specified and is constant in each flow field and the concentrations 
of the components and the thermodynamic properties of the mixture depend solely on two variables: 
the pressure and temperature.  
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